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1 Scope of the Chapter

This chapter provides routines for various types of matrix eigenvalue problem:

– standard eigenvalue problems (finding eigenvalues and eigenvectors of a square matrix A)

– singular value problems (finding singular values and singular vectors of a rectangular matrix A)

– generalized eigenvalue problems (finding eigenvalues and eigenvectors of a matrix pencil A� �B)

Routines are provided for both real and complex data.

Additional routines for these problems can be found in Chapter F08 which contains software derived from
LAPACK (see Anderson et al. (1999)). However, you should read the introduction to this chapter, F02,
before turning to F08, especially if you are a new user.

Chapter F02 contains Black Box routines that enable many problems to be solved by a call to a single
routine, and the decision trees in Section 4 direct you to the most appropriate routines in Chapter F02.
These Black Box routines call routines in Chapter F07 and Chapter F08 wherever possible to perform the
computations, and there are pointers in Section 4 to the relevant decision trees in Chapter F08.

2 Background to the Problems

Here we describe the different types of problem which can be tackled by the routines in this chapter, and
give a brief outline of the methods used to solve them. If you have one specific type of problem to solve,
you need only read the relevant sub-section and then turn to Section 3. Consult a standard textbook for a
more thorough discussion, for example Golub and van Loan (1996) or Parlett (1980).

In each sub-section, we first describe the problem in terms of real matrices. The changes needed to adapt

the discussion to complex matrices are usually simple and obvious: a matrix transpose such as QT must be

replaced by its conjugate transpose QH ; symmetric matrices must be replaced by Hermitian matrices, and
orthogonal matrices by unitary matrices. Any additional changes are noted at the end of the sub-section.

2.1 Standard Eigenvalue Problems

Let A be a square matrix of order n. The standard eigenvalue problem is to find eigenvalues, �, and
corresponding eigenvectors, x 6¼ 0, such that

Ax ¼ �x: ð1Þ
(The phrase ‘eigenvalue problem’ is sometimes abbreviated to eigenproblem.)

2.1.1 Standard symmetric eigenvalue problems

If A is real symmetric, the eigenvalue problem has many desirable features, and it is advisable to take
advantage of symmetry whenever possible.

The eigenvalues � are all real, and the eigenvectors can be chosen to be mutually orthogonal. That is, we
can write

Azi ¼ �izi for i ¼ 1; 2; . . . ; n

or equivalently:

AZ ¼ Z� ð2Þ
where � is a real diagonal matrix whose diagonal elements �i are the eigenvalues, and Z is a real

orthogonal matrix whose columns zi are the eigenvectors. This implies that zTi zj ¼ 0 if i 6¼ j, and

kzik2 ¼ 1.

Equation (2) can be rewritten

A ¼ Z�ZT : ð3Þ
This is known as the eigen-decomposition or spectral factorization of A.
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Eigenvalues of a real symmetric matrix are well-conditioned, that is, they are not unduly sensitive to
perturbations in the original matrix A. The sensitivity of an eigenvector depends on how small the gap is
between its eigenvalue and any other eigenvalue: the smaller the gap, the more sensitive the eigenvector.
More details on the accuracy of computed eigenvalues and eigenvectors are given in the routine
documents, and in Chapter F08.

For dense or band matrices, the computation of eigenvalues and eigenvectors proceeds in the following
stages:

1. A is reduced to a symmetric tridiagonal matrix T by an orthogonal similarity transformation:

A ¼ QTQT , where Q is orthogonal. (A tridiagonal matrix is zero except for the main diagonal and
the first subdiagonal and superdiagonal on either side.) T has the same eigenvalues as A and is easier
to handle.

2. Eigenvalues and eigenvectors of T are computed as required. If all eigenvalues (and optionally
eigenvectors) are required, they are computed by the QR algorithm, which effectively factorizes T as

T ¼ S�ST , where S is orthogonal. If only selected eigenvalues are required, they are computed by
bisection, and if selected eigenvectors are required, they are computed by inverse iteration. If s is an
eigenvector of T , then Qs is an eigenvector of A.

All the above remarks also apply – with the obvious changes – to the case when A is a complex Hermitian
matrix. The eigenvectors are complex, but the eigenvalues are all real, and so is the tridiagonal matrix T .

If A is large and sparse, the methods just described would be very wasteful in both storage and computing
time, and therefore an alternative algorithm, known as subspace iteration, is provided (for real problems
only) to find a (usually small) subset of the eigenvalues and their corresponding eigenvectors.

2.1.2 Standard nonsymmetric eigenvalue problems

A real nonsymmetric matrix A may have complex eigenvalues, occurring as complex conjugate pairs. If x
is an eigenvector corresponding to a complex eigenvalue �, then the complex conjugate vector �xx is the

eigenvector corresponding to the complex conjugate eigenvalue ���. Note that the vector x defined in
equation (1) is sometimes called a right eigenvector; a left eigenvector y is defined by

yHA ¼ �yH or ATy ¼ ���y:

Routines in this chapter only compute right eigenvectors (the usual requirement), but routines in
Chapter F08 can compute left or right eigenvectors or both.

The eigenvalue problem can be solved via the Schur factorization of A, defined as

A ¼ ZTZT ;

where Z is an orthogonal matrix and T is a real upper quasi-triangular matrix, with the same eigenvalues
as A. T is called the Schur form of A. If all the eigenvalues of A are real, then T is upper triangular, and
its diagonal elements are the eigenvalues of A. If A has complex conjugate pairs of eigenvalues, then T
has 2 by 2 diagonal blocks, whose eigenvalues are the complex conjugate pairs of eigenvalues of A. (The
structure of T is simpler if the matrices are complex – see below.)

For example, the following matrix is in quasi-triangular form

1 � � �
0 2 �1 �
0 1 2 �
0 0 0 3

0
BB@

1
CCA

and has eigenvalues 1, 2� i, and 3. (The elements indicated by ‘�’ may take any values.)

The columns of Z are called the Schur vectors. For each k ð1 � k � nÞ, the first k columns of Z form an
orthonormal basis for the invariant subspace corresponding to the first k eigenvalues on the diagonal of T .
(An invariant subspace (for A) is a subspace S such that for any vector v in S, Av is also in S.) Because
this basis is orthonormal, it is preferable in many applications to compute Schur vectors rather than
eigenvectors. It is possible to order the Schur factorization so that any desired set of k eigenvalues occupy
the k leading positions on the diagonal of T , and routines for this purpose are provided in Chapter F08.
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Note that if A is symmetric, the Schur vectors are the same as the eigenvectors, but if A is nonsymmetric,
they are distinct, and the Schur vectors, being orthonormal, are often more satisfactory to work with in
numerical computation.

Eigenvalues and eigenvectors of an nonsymmetric matrix may be ill-conditioned, that is, sensitive to
perturbations in A. Chapter F08 contains routines which compute or estimate the condition numbers of
eigenvalues and eigenvectors, and the Introduction to that Chapter gives more details about the error
analysis of nonsymmetric eigenproblems. The accuracy with which eigenvalues and eigenvectors can be
obtained is often improved by balancing a matrix. This is discussed further in Section 3.4 below.

Computation of eigenvalues, eigenvectors or the Schur factorization proceeds in the following stages:

1. A is reduced to an upper Hessenberg matrix H by an orthogonal similarity transformation:

A ¼ QHQT , where Q is orthogonal. (An upper Hessenberg matrix is zero below the first
subdiagonal.) H has the same eigenvalues as A, and is easier to handle.

2. The upper Hessenberg matrix H is reduced to Schur form T by the QR algorithm, giving the Schur

factorization H ¼ STST . The eigenvalues of A are obtained from the diagonal blocks of T . The
matrix Z of Schur vectors (if required) is computed as Z ¼ QS.

3. After the eigenvalues have been found, eigenvectors may be computed, if required, in two different
ways. Eigenvectors of H can be computed by inverse iteration, and then pre-multiplied by Q to give
eigenvectors of A; this approach is usually preferred if only a few eigenvectors are required.
Alternatively, eigenvectors of T can be computed by back-substitution, and pre-multiplied by Z to
give eigenvectors of A.

All the above remarks also apply – with the obvious changes – to the case when A is a complex matrix.
The eigenvalues are in general complex, so there is no need for special treatment of complex conjugate
pairs, and the Schur form T is simply a complex upper triangular matrix.

2.2 The Singular Value Decomposition

The singular value decomposition (SVD) of a real m by n matrix A is given by

A ¼ U�V T ;

where U and V are orthogonal and � is an m by n diagonal matrix with real diagonal elements, �i, such
that

�1 � �2 � � � � � �minðm;nÞ � 0:

The �i are the singular values of A and the first minðm;nÞ columns of U and V are, respectively, the left
and right singular vectors of A. The singular values and singular vectors satisfy

Avi ¼ �iui and ATui ¼ �ivi

where ui and vi are the ith columns of U and V respectively.

The singular value decomposition of A is closely related to the eigen-decompositions of the symmetric

matrices ATA or AAT , because:

ATAvi ¼ �2
i vi and AATui ¼ �2i ui:

However, these relationships are not recommended as a means of computing singular values or vectors.

Singular values are well-conditioned; that is, they are not unduly sensitive to perturbations in A. The
sensitivity of a singular vector depends on how small the gap is between its singular value and any other
singular value: the smaller the gap, the more sensitive the singular vector. More details on the accuracy of
computed singular values and vectors are given in the routine documents and in the F08 Chapter
Introduction.

The singular value decomposition is useful for the numerical determination of the rank of a matrix, and for
solving linear least-squares problems, especially when they are rank-deficient (or nearly so). See
Chapter F04.

Computation of singular values and vectors proceeds in the following stages:
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1. A is reduced to an upper bidiagonal matrix B by an orthogonal transformation A ¼ U1BV
T
1 , where

U1 and V1 are orthogonal. (An upper bidiagonal matrix is zero except for the main diagonal and the
first superdiagonal.) B has the same singular values as A, and is easier to handle.

2. The SVD of the bidiagonal matrix B is computed as B ¼ U2�V T
2 , where U2 and V2 are orthogonal

and � is diagonal as described above. Then in the SVD of A, U ¼ U1U2 and V ¼ V1V2.

All the above remarks also apply – with the obvious changes – to the case when A is a complex matrix.
The singular vectors are complex, but the singular values are real and non-negative, and the bidiagonal
matrix B is also real.

2.3 Generalized Eigenvalue Problems

Let A and B be square matrices of order n. The generalized eigenvalue problem is to find eigenvalues, �,
and corresponding eigenvectors, x 6¼ 0, such that

Ax ¼ �Bx: ð4Þ
For given A and B, the set of all matrices of the form A� �B is called a pencil, and � and x are said to
be an eigenvalue and eigenvector of the pencil A� �B.

When B is non-singular, equation (4) is mathematically equivalent to ðB�1AÞx ¼ �x, and when A is non-

singular, it is equivalent to ðA�1BÞx ¼ ð1=�Þx. Thus, in theory, if one of the matrices A or B is known to
be nonsingular, the problem could be reduced to a standard eigenvalue problem.

However, for this reduction to be satisfactory from the point of view of numerical stability, it is necessary
not only that B (or A) should be nonsingular, but that it should be well-conditioned with respect to

inversion. The nearer B is to singularity, the more unsatisfactory B�1A will be as a vehicle for
determining the required eigenvalues. Well-determined eigenvalues of the original problem (4) may be

poorly determined even by the correctly rounded version of B�1A.

We consider first a special class of problems in which B is known to be non-singular, and then return to
the general case in the following sub-section.

2.3.1 Generalized symmetric-definite eigenvalue problems

If A and B are symmetric and B is positive-definite, then the generalized eigenvalue problem has desirable
properties similar to those of the standard symmetric eigenvalue problem. The eigenvalues are all real, and

the eigenvectors, while not orthogonal in the usual sense, satisfy the relations zTi Bzj ¼ 0 for i 6¼ j and can

be normalized so that zTi Bzi ¼ 1.

Note that it is not enough for A and B to be symmetric; B must also be positive-definite, which implies
non-singularity. Eigenproblems with these properties are referred to as symmetric-definite problems.

If � is the diagonal matrix whose diagonal elements are the eigenvalues, and Z is the matrix whose
columns are the eigenvectors, then

ZTAZ ¼ � and ZTBZ ¼ I:

To compute eigenvalues and eigenvectors, the problem can be reduced to a standard symmetric eigenvalue

problem, using the Cholesky factorization of B as LLT or UTU (see Chapter F07). Note, however, that
this reduction does implicitly involve the inversion of B, and hence this approach should not be used if B
is ill-conditioned with respect to inversion.

For example, with B ¼ LLT , we have

Az ¼ �Bz , ðL�1AðL�1ÞT ÞðLTzÞ ¼ �ðLTzÞ:
Hence the eigenvalues of Az ¼ �Bz are those of Cy ¼ �y, where C is the symmetric matrix

C ¼ L�1AðL�1ÞT and y ¼ LTz. The standard symmetric eigenproblem Cy ¼ �y may be solved by the
methods described in Section 2.1.1. The eigenvectors z of the original problem may be recovered by

computing z ¼ ðLT Þ�1y.
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Most of the routines which solve this class of problems can also solve the closely related problems

ABx ¼ �x or BAx ¼ �x

where again A and B are symmetric and B is positive-definite. See the routine documents for details.

All the above remarks also apply – with the obvious changes – to the case when A and B are complex
Hermitian matrices. Such problems are called Hermitian-definite. The eigenvectors are complex, but the
eigenvalues are all real.

If A and B are large and sparse, reduction to an equivalent standard eigenproblem as described above
would almost certainly result in a large dense matrix C, and hence would be very wasteful in both storage
and computing time. The method of subspace iteration, mentioned in Section 2.1.1, can also be used for
large sparse generalized symmetric-definite problems.

2.3.2 Generalized nonsymmetric eigenvalue problems

Any generalized eigenproblem which is not symmetric-definite with well-conditioned B must be handled
as if it were a general nonsymmetric problem.

If B is singular, the problem has infinite eigenvalues. These are not a problem; they are equivalent to zero
eigenvalues of the problem Bx ¼ �Ax. Computationally they appear as very large values.

If A and B are both singular and have a common null-space, then A� �B is singular for all �; in other
words, any value � can be regarded as an eigenvalue. Pencils with this property are called singular.

As with standard nonsymmetric problems, a real problem may have complex eigenvalues, occurring as
complex conjugate pairs.

The generalized eigenvalue problem can be solved via the generalized Schur factorization of A and B:

A ¼ QUZT ; B ¼ QVZT

where Q and Z are orthogonal, V is upper triangular, and U is upper quasi-triangular (defined just as in
Section 2.1.2).

If all the eigenvalues are real, then U is upper triangular; the eigenvalues are given by �i ¼ uii=vii. If
there are complex conjugate pairs of eigenvalues, then U has 2 by 2 diagonal blocks.

Eigenvalues and eigenvectors of a generalized nonsymmetric problem may be ill-conditioned; that is,
sensitive to perturbations in A or B.

Particular care must be taken if, for some i, uii ¼ vii ¼ 0, or in practical terms if uii and vii are both small;
this means that the pencil is singular, or approximately so. Not only is the particular value �i

undetermined, but also no reliance can be placed on any of the computed eigenvalues. See also the
routine documents.

Computation of eigenvalues and eigenvectors proceeds in the following stages.

1. The pencil A� �B is reduced by an orthogonal transformation to a pencil H � �K in which H is

upper Hessenberg and K is upper triangular: A ¼ Q1HZT
1 and B ¼ Q1KZT

1 . The pencil H � �K
has the same eigenvalues as A� �B, and is easier to handle.

2. The upper Hessenberg matrix H is reduced to upper quasi-triangular form, while K is maintained in
upper triangular form, using the QZ algorithm. This gives the generalized Schur factorization:
H ¼ Q2UZ2 and K ¼ Q2V Z2.

3. Eigenvectors of the pencil U � �V are computed (if required) by back-substitution, and pre-multiplied
by Z1Z2 to give eigenvectors of A.

All the above remarks also apply – with the obvious changes – to the case when A and B are complex
matrices. The eigenvalues are in general complex, so there is no need for special treatment of complex
conjugate pairs, and the matrix U in the generalized Schur factorization is simply a complex upper
triangular matrix.
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3 Recommendations on Choice and Use of Available Routines

Note: refer to the Users’ Note for your implementation to check that a routine is available.

3.1 Black Box Routines and General Purpose Routines

Routines in the NAG Library for solving eigenvalue problems fall into two categories.

(i) Black Box Routines

These are designed to solve a standard type of problem in a single call – for example, to compute all
the eigenvalues and eigenvectors of a real symmetric matrix. You are recommended to use a black
box routine if there is one to meet your needs; refer to the decision tree in Section 4.1 or the index in
Section 5.

(ii) General Purpose Routines

These perform the computational subtasks which make up the separate stages of the overall task, as
described in Section 2 – for example, reducing a real symmetric matrix to tridiagonal form. General
purpose routines are to be found, for historical reasons, some in this Chapter, a few in Chapter F01,
but most in Chapter F08. If there is no black box routine that meets your needs, you will need to use
one or more general purpose routines.

Here are some of the more likely reasons why you may need to do this:

Your problem is already in one of the reduced forms – for example, your symmetric matrix is
already tridiagonal.

You wish to economize on storage for symmetric matrices (see Section 3.3).

You wish to find selected eigenvalues or eigenvectors of a generalized symmetric-definite
eigenproblem (see also Section 3.2).

The decision trees in Section 4.2 list the combinations of general purpose routines which are needed to
solve many common types of problem.

Sometimes a combination of a black box routine and one or more general purpose routines will be the
most convenient way to solve your problem: the black box routine can be used to compute most of the
results, and a general purpose routine can be used to perform a subsidiary computation, such as computing
condition numbers of eigenvalues and eigenvectors.

3.2 Computing Selected Eigenvalues and Eigenvectors

The decision trees and the routine documents make a distinction between routines which compute all
eigenvalues or eigenvectors, and routines which compute selected eigenvalues or eigenvectors; the two
classes of routine use different algorithms.

It is difficult to give clear guidance on which of these two classes of routine to use in a particular case,
especially with regard to computing eigenvectors. If you only wish to compute a very few eigenvectors,
then a routine for selected eigenvectors will be more economical, but if you want to compute a substantial
subset (an old rule of thumb suggested more than 25%), then it may be more economical to compute all of
them. Conversely, if you wish to compute all the eigenvectors of a sufficiently large symmetric tridiagonal
matrix, the routine for selected eigenvectors may be faster.

The choice depends on the properties of the matrix and on the computing environment; if it is critical, you
should perform your own timing tests.

For nonsymmetric eigenproblems, there are no algorithms provided for computing selected eigenvalues; it
is always necessary to compute all the eigenvalues, but you can then select specific eigenvectors for
computation by inverse iteration.

3.3 Storage Schemes for Symmetric Matrices

Routines which handle symmetric matrices are usually designed to use either the upper or lower triangle of
the matrix; it is not necessary to store the whole matrix. If either the upper or lower triangle is stored
conventionally in the upper or lower triangle of a two-dimensional array, the remaining elements of the
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array can be used to store other useful data. However, that is not always convenient, and if it is important
to economize on storage, the upper or lower triangle can be stored in a one-dimensional array of length
nðnþ 1Þ=2; in other words, the storage is almost halved. This storage format is referred to as packed
storage.

Routines designed for packed storage are usually less efficient, especially on high-performance computers,
so there is a trade-off between storage and efficiency.

A band matrix is one whose non-zero elements are confined to a relatively small number of sub-diagonals
or super-diagonals on either side of the main diagonal. Algorithms can take advantage of bandedness to
reduce the amount of work and storage required.

Routines which take advantage of packed storage or bandedness are provided for both standard symmetric
eigenproblems and generalized symmetric-definite eigenproblems.

3.4 Balancing for Nonsymmmetric Eigenproblems

There are two preprocessing steps which one may perform on an nonsymmetric matrix A in order to make
its eigenproblem easier. Together they are referred to as balancing.

Permutation: This involves reordering the rows and columns to make A more nearly upper triangular (and

thus closer to Schur form): A0 ¼ PAPT , where P is a permutation matrix. If A has a significant number
of zero elements, this preliminary permutation can reduce the amount of work required, and also improve
the accuracy of the computed eigenvalues. In the extreme case, if A is permutable to upper triangular
form, then no floating-point operations are needed to reduce it to Schur form.

Scaling: A diagonal matrix D is used to make the rows and columns of A0 more nearly equal in norm:

A00 ¼ DA0D�1. Scaling can make the matrix norm smaller with respect to the eigenvalues, and so
possibly reduce the inaccuracy contributed by roundoff (see Chapter II/11 of Wilkinson and Reinsch
(1971)).

Routines are provided in Chapter F08 for performing either or both of these pre-processing steps, and also
for transforming computed eigenvectors or Schur vectors back to those of the original matrix.

Black box routines in this chapter which compute the Schur factorization perform only the permutation
step, since diagonal scaling is not in general an orthogonal transformation. The black box routines which
compute eigenvectors perform both forms of balancing.

3.5 Non-uniqueness of Eigenvectors and Singular Vectors

Eigenvectors, as defined by equations (1) or (4), are not uniquely defined. If x is an eigenvector, then so is
kx where k is any non-zero scalar. Eigenvectors computed by different algorithms, or on different
computers, may appear to disagree completely, though in fact they differ only by a scalar factor (which
may be complex). These differences should not be significant in any application in which the eigenvectors
will be used, but they can arouse uncertainty about the correctness of computed results.

Even if eigenvectors x are normalized so that kxk2 ¼ 1, this is not sufficient to fix them uniquely, since

they can still be multiplied by a scalar factor k such that jkj ¼ 1. To counteract this inconvenience, most
of the routines in this chapter, and in Chapter F08, normalize eigenvectors (and Schur vectors) so that
kxk2 ¼ 1 and the component of x with largest absolute value is real and positive. (There is still a possible

indeterminacy if there are two components of equal largest absolute value – or in practice if they are very
close – but this is rare.)

In symmetric problems the computed eigenvalues are sorted into ascending order, but in nonsymmetric
problems the order in which the computed eigenvalues are returned is dependent on the detailed working
of the algorithm and may be sensitive to rounding errors. The Schur form and Schur vectors depend on
the ordering of the eigenvalues and this is another possible cause of non-uniqueness when they are
computed. However, it must be stressed again that variations in the results from this cause should not be
significant. (Routines in Chapter F08 can be used to transform the Schur form and Schur vectors so that
the eigenvalues appear in any given order if this is important.)

In singular value problems, the left and right singular vectors u and v which correspond to a singular value
� cannot be normalized independently: if u is multiplied by a factor k such that jkj ¼ 1, then v must also
be multiplied by k.
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Non-uniqueness also occurs among eigenvectors which correspond to a multiple eigenvalue, or among
singular vectors which correspond to a multiple singular value. In practice, this is more likely to be
apparent as the extreme sensitivity of eigenvectors which correspond to a cluster of close eigenvalues (or
of singular vectors which correspond to a cluster of close singular values).

4 Decision Trees

4.1 Black Box Routines

The decision tree for this section is divided into three sub-trees.

Tree 1: Eigenvalues and eigenvectors of real matrices

Tree 2: Eigenvalues and eigenvectors of complex matrices

Tree 3: Singular values and singular vectors

Tree 1: Eigenvalues and Eigenvectors of Real Matrices

Is the eigenproblem
Ax = λBx?

F02FHF

F02FDF

F02FAF

Are eigenvalues only
required?

F02FJF

Is this a sparse
symmetric
eigenproblemAx = λx

or Ax = λBx?

Are A andB band
matrices?

F02BJF

F02FCF

Is the Schur
factorization required?

Are all eigenvectors
required?

F02ECF

F02EBF

F02EBF

F02EAF

yes

yes

yes

yes

yes

yes

no

no

no

no

no

no

Are all eigenvalues and
eigenvectors required?

no

no

Are A andB symmetric
with B positive−definite
and well−conditioned
w.r.t. inversion?

The eigenproblem is
Ax = λx. Is A

symmetric?

no

yes

yes

yes
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Tree 2: Eigenvalues and Eigenvectors of Complex Matrices

F02HAF

F02GBF

F02GAF

F02GBF

Is the Schur
factorization required?

The eigenproblem is
Ax = λx. Is A

Hermitian?

Is the eigenproblem
Ax = λBx?

Are eigenvalues
only required?

Are all eigenvectors
required?

F02GCF

no

no

no

no

yes

no

no

Are all eigenvalues and
eigenvectors required?

F02HCF

yes

yes

yes

yes

yes

F02HDF

no

Are A andB real
symmetric withB
positive−definite and
well−conditioned w.r.t.
inversion?

F02GJF

yes

Tree 3: Singular Values and Singular Vectors

no

yes

no
no

F02WEF

F02XUF

F02XEF

F02WUF
Is A upper
triangular?

Is A a complex
matrix?

Is A upper
triangular?

yes

yes
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4.2 General Purpose Routines (Eigenvalues and Eigenvectors)

The decision tree for this section is divided into six sub-trees. These are given in Section 4 of the F08
Chapter Introduction:

Tree 1: Real symmetric eigenproblems, Ax ¼ �x.

Tree 2: Real generalized symmetric-definite eigenproblems, Ax ¼ �Bx;ABx ¼ �x or BAx ¼ �x.

Tree 3: Real nonsymmetric eigenproblems, Ax ¼ �x.

Tree 4: Complex Hermitian eigenproblems, Ax ¼ �x.

Tree 5: Complex generalized Hermitian-definite eigenproblems, Ax ¼ �Bx;ABx ¼ �x or
BAx ¼ �x.

Tree 6: Complex non-Hermitian eigenproblems, Ax ¼ �x.

Note: there are no general purpose routines for the problem Ax ¼ �Bx, where A and B are real or
complex but not otherwise specialised. Use the Black Box routines F02BJF or F02GJF.

As it is very unlikely that one of the routines in this section will be called on its own, the other routines
required to solve a given problem are listed in the order in which they should be called.

4.3 General Purpose Routines (Singular Value Decomposition)

See Section 4.2 of the F08 Chapter Introduction.

5 Index

Black Box Routines

Complex Hermitian matrix, all eigenvalues and eigenvectors ......................................................... F02HAF
Complex Hermitian matrix, selected eigenvalues and eigenvectors ................................................ F02HCF
Complex matrix, all eigenvalues and eigenvectors ........................................................................... F02GBF
Complex matrix, Schur factorization ................................................................................................. F02GAF
Complex matrix, selected eigenvalues and eigenvectors .................................................................. F02GCF
Complex upper triangular matrix, singular values and, optionally, left and/or right singular vectors F02XUF
Complex m by n matrix, singular values and, optionally, left and/or right singular vectors ....... F02XEF
Generalized complex eigenproblem ................................................................................................... F02GJF
Generalized complex Hermitian-definite eigenproblem, all eigenvalues and eigenvectors ............. F02HDF
Generalized real eigenproblem ........................................................................................................... F02BJF
Generalized real band symmetric-definite eigenproblem, eigenvalues ............................................. F02FHF
Generalized real sparse symmetric-definite eigenproblem, selected eigenvalues and eigenvectors F02FJF
Generalized real symmetric-definite eigenproblem, all eigenvalues and eigenvectors .................... F02FDF
Real sparse symmetric matrix, selected eigenvalues and eigenvectors ........................................... F02FJF
Real symmetric matrix, all eigenvalues and eigenvectors ................................................................ F02FAF
Real symmetric matrix, selected eigenvalues and eigenvectors ....................................................... F02FCF
Real matrix, all eigenvalues and eigenvectors .................................................................................. F02EBF
Real matrix, Schur Factorization ....................................................................................................... F02EAF
Real matrix, selected eigenvalues and eigenvectors ......................................................................... F02ECF
Real upper triangular matrix, singular values and, optionally, left and/or right singular vectors . F02WUF
Real m by n matrix, singular values and, optionally, left and/or right singular vectors .............. F02WEF

General Purpose Routines (see also Chapter F08)

Real m by n matrix (m � n), QR factorization and SVD ............................................................. F02WDF
Real band matrix, selected eigenvector, A� �B ............................................................................. F02SDF
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6 Routines Withdrawn or Scheduled for Withdrawal

The following routines have been withdrawn. Advice on replacing calls to those withdrawn since Mark 13
is given in the document ‘Advice on Replacement Calls for Withdrawn/Superseded Routines’.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

F02AAF 18 F02FAF
F02ABF 18 F02FAF
F02ADF 18 F02FDF
F02AEF 18 F02FDF
F02AFF 18 F02EBF
F02AGF 18 F02EBF
F02AHF 8 F02ECF
F02AJF 18 F02GBF
F02AKF 18 F02GBF
F02ALF 8 F02GCF
F02AMF 18 F08JEF (SSTEQR=DSTEQR)
F02ANF 18 F08PSF (CHSEQR=ZHSEQR)
F02APF 18 F08PEF (SHSEQR=DHSEQR)
F02AQF 18 F08PEF (SHSEQR=DHSEQR) and F08QKF (STREVC=DTREVC)
F02ARF 18 F08PSF (CHSEQR=ZHSEQR) and F08QXF (CTREVC=ZTREVC)
F02ATF 8 F08PKF (SHSEIN=DHSEIN)
F02AUF 8 F08PXF (CHSEIN=ZHSEIN)
F02AVF 18 F08JFF (SSTERF=DSTERF)
F02AWF 18 F02HAF
F02AXF 18 F02HAF
F02AYF 18 F08JSF (CSTEQR=ZSTEQR)
F02BBF 19 F02FCF
F02BCF 19 F02ECF
F02BDF 19 F02GCF
F02BEF 18 F08JJF (SSTEBZ=DSTEBZ) and F08JKF (SSTEIN=DSTEIN)
F02BFF 18 F08JJF (SSTEBZ=DSTEBZ)
F02BKF 18 F08PKF (SHSEIN=DHSEIN)
F02BLF 18 F08PXF (CHSEIN=ZHSEIN)
F02BMF 9 F08HEF (SSBTRD=DSBTRD) and F08JJF (SSTEBZ=DSTEBZ)
F02SWF 18 F08KEF (SGEBRD=DGEBRD)
F02SXF 18 F08KFF (SORGBR=DORGBR) or F08KGF (SORMBR=DORMBR)
F02SYF 18 F08MEF (SBDSQR=DBDSQR)
F02SZF 15 F08MEF (SBDSQR=DBDSQR)
F02UWF 18 F08KSF (CGEBRD=ZGEBRD)
F02UXF 18 F08KTF (CUNGBR=ZUNGBR) or F08KUF (CUNMBR=ZUNMBR)
F02UYF 18 F08MSF (CBDSQR=ZBDSQR)
F02WAF 16 F02WEF
F02WBF 14 F02WEF
F02WCF 14 F02WEF
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